
Contents lists available at ScienceDirect

Computers, Environment and Urban Systems

journal homepage: www.elsevier.com/locate/ceus

The design of an IoT-GIS platform for performing automated analytical tasks

Hung Cao⁎, Monica Wachowicz
People in Motion Lab, University of New Brunswick, Canada

A R T I C L E I N F O

Keywords:
Internet of things
Automated analytical tasks
Mobility context
Smart transit

A B S T R A C T

Society has a very ambitious vision of building smart interconnected cities through the Internet of Things (IoT).
Billions of data streams will be generated by devices using different networking infrastructures of smart cities,
enabling the automation of how the data that are being collected can be analysed for. However, significant
scientific and technological challenges need to be overcome before IoT-GIS platforms can be widely used. This
paper is a first step towards designing an IoT-GIS platform for performing automated analytical tasks that are
able to retrieve, integrate and contextualize data streams with the purpose of adding value to the provision of
transit services. Three automated tasks are used to describe our platform: (1) data ingestion for retrieving data
streams; (2) data cleaning for handling missing and redundant data streams; and (3) data contextualization for
representing the mobility context of transit driving behaviour. The Codiac Transit System of the Greater
Moncton area, NB, Canada was used for building a mobility context and evaluating the cloud architecture that
was used to implement our IoT-GIS platform. From the experimental results, the need for cloud computing for
achieving scalability and high performance of our IoT-GIS platform is validated. Suggestions for the operational
management of routes to improve service quality are proposed based on the analytical outcomes.

1. Introduction

With the advent of the Internet of Things, the spread of geo-
graphically distributed devices equipped with sensing capabilities will
generate real-time data streams that will be transported through com-
munication networks such as WiFi, Bluetooth, Zigbee, LoRaWan, and
5G. The IoT devices are usually equipped with many kinds of sensors,
ranging from accelerometers and gyroscopes to proximity, light, mi-
crophones, and cameras. They generate data streams that are usually an
unbounded sequence of tuples that are most likely to be out-of-order
and having a high data rate. A vast number of devices are being em-
bedded into the very fabric of smart cities in such a way that they will
revolutionize operational functioning and planning, through manage-
ment, control and optimization of traditional services such as intelligent
fleet management (Sun et al., 2016), smart parking (Mainetti, Patrono,
Stefanizzi, & Vergallo, 2015) and digital health (Banos et al., 2016).
This is already causing a shift from traditional GIS platforms towards
IoT-GIS platforms in which IoT devices are linked by means of com-
munication technologies that are crucial to enable smart cities func-
tioning in real-time from routinely sensed data (Batty et al., 2012; Song,
Srinivasan, Sookoor, & Jeschke, 2017). The fundamental assumptions
underpinning GIS platforms are being challenged due to the prolifera-
tion of sensors, intelligent high bandwidth networks and cloud

computing. In particular, traditional GIS platforms are inefficient
mainly because they usually require heavily coordination of several
tasks using limited computing resources. Moreover, the coordination of
these tasks has been time-consuming and error-prone, since the tasks
were not fully integrated, requiring human intervention for executing
them to achieve new insights.

Automated analytical tasks must handle the continuous production
of tuples flowing from the devices through a variety of tasks running on
IoT-GIS platforms. These tasks will be performed at regular times (e.g.
every hour) or be triggered every time the tuples arrive at a platform.
Previous attempts have been focused on developing automated analy-
tical tasks for network monitoring (Gupta et al., 2016), fraud detection
(Rajeshwari & Babu, 2016), data warehouse augmentation (Meehan,
Aslantas, Zdonik, Tatbul, & Du, 2017), risk management (Puthal, Nepal,
Ranjan, & Chen, 2016) and distributed processing of sensor-web data
(Duckham, 2012). No research efforts on developing IoT-GIS platforms
have been found in the literature so far.

From a conceptual perspective, an IoT-GIS platform will play an
important role in exploring data streams in time and space. Time is an
important dimension of this platform, and different approaches have
been proposed in the literature to handle unbounded data streams,
including landmark windows (Leung, Cuzzocrea, & Jiang, 2013),
sliding windows (Lee, Yun, & Ryu, 2014), and tilted windows

https://doi.org/10.1016/j.compenvurbsys.2018.11.004
Received 19 July 2018; Received in revised form 16 October 2018; Accepted 21 November 2018

⁎ Corresponding author at: People in Motion Lab, University of New Brunswick, 15 Dineen Drive, Head Hall, Rm E-50, Fredericton, NB E3B 5A3, Canada.
E-mail address: hcao3@unb.ca (H. Cao).

Computers, Environment and Urban Systems 74 (2019) 23–40

0198-9715/ © 2018 Elsevier Ltd. All rights reserved.

T

http://www.sciencedirect.com/science/journal/01989715
https://www.elsevier.com/locate/ceus
https://doi.org/10.1016/j.compenvurbsys.2018.11.004
https://doi.org/10.1016/j.compenvurbsys.2018.11.004
mailto:hcao3@unb.ca
https://doi.org/10.1016/j.compenvurbsys.2018.11.004
http://crossmark.crossref.org/dialog/?doi=10.1016/j.compenvurbsys.2018.11.004&domain=pdf

(Giannella, Han, Pei, Yan, & Yu, 2003). In contrast, the space dimension
has been neglected so far, even though data streams are being gener-
ated over large geographical areas with fine spatial granularity. The
scientific challenge is to integrate the notion of a mobility context into a
IoT-GIS platform as being more than location, date and time (Bettini
et al., 2010; Ranasinghe & Walpola, 2016).

From an implementation perspective, an IoT-GIS platform will re-
quire (1) a pre-build connector that supports data connectivity to
communicate with several devices, (2) a low-latency database for
storing data streams, and (3) high performance processing for sup-
porting the automated tasks. The technological challenge is to design an
IoT-GIS platform that can perform analytical tasks without human in-
tervention (e.g. an event from an IoT device triggers an analytical task),
and at the same time, cope with the transportation of unbounded data
streams where the data rate may overwhelm the processing power of
this platform.

One way to address both scientific and technological challenges is to
consider designing an IoT-GIS platform based on cloud computing for
coupling data streams with automated tasks with the purpose of as-
sessing existing transit services. Towards this end, this paper proposes
the design of an IoT-GIS platform that supports three automated ana-
lytical tasks taking into account the mobility context given by a transit
agency of a small urban area. They are: data ingestion, data cleaning and
data contextualization. Each task consists of several automated steps that
are designed bearing in mind a mobility context. Although the idea
exists that context plays an important role in IoT, it continues to lack
careful examination. Many mobility contexts may exist according to the
relevance of taking into account the contextual history derived from the
actual mobility of transit vehicles and their interaction with urban
forms (i.e. streets and intersections).

Our research assumption is that mobility contexts help to explain
the phenomena, reinforces different perspectives, provides truly un-
derstanding of the background of the problems and may have many
dimensions such as spatial, physical, social, and temporal. And as a
result, they are an important requirement, together with scalability and
automation to take into account when designing an IoT-GIS platform.
The proposed IoT-GIS platform is demonstrated with AVL stream data
(Automatic Vehicle Location) collected by the Codiac Transit Agency of
the Greater Moncton Area, which serves a small urbanized area in New
Brunswick, Canada. Small transit agencies usually lack resources and
have small fleet sizes and simpler route structuring, making the IoT-GIS
platform relevant to improve their ability to collect data, to coordinate
the analytical tasks and access the results, as well as to monitor op-
erational strategies.

The remainder of this paper is organized as follows. In Section 2,
related works in GIS platforms previously developed for smart transit
applications are reviewed and the existing IoT platforms are described.
In Section 3, the IoT-GIS platform is presented, including the details of
the automated tasks, specifications, and requirements. Section 4 is
dedicated to describing the cloud architecture used to implement the
IoT-GIS platform. Section 5 describes in detail the experiment of im-
plementing our IoT-GIS platform for the Codiac Transit Agency. Section
6 discusses both the performance of the proposed platform and the
experiment analysis results. Section 7 concludes the paper and discusses
further research.

2. Related work

Small transit agencies tend to have limited resources for facing the
challenges of continually increasing the high quality of the delivered
transit services and reducing private car dependency while ensuring
low operational costs, low environmental impact, and safety. To this
end, transit operators and managers need to understand the functioning
of their services to develop strategies for their availability, reliability,
and performance. Although a significant effort towards automating the
collection of data has been achieved by transit agencies, including

Automatic Fare Collection (AFC), Automatic Vehicle Location (AVL),
and Generated Transit Feed Specification (GTFS), the actual stream
data generated at the vehicular level continues to be difficult to be
retrieved due to its large data volume and the absence of automated
tasks. Traditionally, the platforms have been designed for sending the
stream data to a server, where the data can be later stored in a GIS
where further pre-processing is manually performed and ad-hoc queries
are executed by the users of this platform. Some examples include the
SQL database platform integrated with a web interface proposed by Pi,
Egge, Whitmore, Silbermann, and Qian (2018) that allows users to
perform interactive queries to examine the impact of bus bunching in a
transit network performance using metrics about the bus routes, bus
stops and trips obtained from four years of Automated Passenger
Counter (APC) and AVL data. Luo, Bonnetain, Cats, and Van Lint (2018)
proposed a PostgreSQL-Matlab platform for carrying a sequence of pre-
processing steps needed to integrate AFC, AVL, and GTFS datasets and
later generating space-time seat occupancy graphs which have provided
transit operators with information about crowding patterns that can be
used to improve timetable optimization and fleet scheduling. The pre-
processing steps are manually performed, and the time processing of
each step can vary significantly depending of the availability of stream
data.

Small transit agencies also lack the resources for performing ana-
lytical tasks that are vital for developing a long-range strategic plan or
avoiding planning in a reactive manner. Previous research work has
demonstrated the important role of analytical tasks in providing new
insights for large transit agencies. Zhong, Huang, Arisona, Schmitt, and
Batty (2014) have applied a two-step analytical framework based on a
probabilistic Bayesian model combined with IDW function in ArcGIS to
build functions from equivalent daily social activities using data from
surveys carried out every four years and the smart card system gener-
ated by the Singapore Land Transport Authority. Isukapati, Rudová,
Barlow, and Smith (2017) demonstrates how descriptive analytics tasks
can provide new insights on the dwell times at bus stops of two sample
bus routes provided by Port Authority of Allengheny County, Pennsyl-
vania. The results can be used for improving urban traffic signal control
when the uncertainty in dwell times at bus stops might result in delays
for the traffic flow. However most of these tasks tasks have not been
developed to be executed in any platform yet, and as Lv, Song, Basanta-
Val, Steed, and Jo (2017) point out that not only data collection tasks
but also analytical tasks will become more automated in the near fu-
ture.

There is a growing interest and demand to develop IoT platforms
that can support automated analytical tasks, ranging from data collec-
tion and pre-processing tasks to analytics and visualization tasks. Our
research work is one step in this direction. A systematic overview of IoT
can be found in several surveys that have been recently published.
Some examples include the survey of Al-Fuqaha, Guizani, Mohammadi,
Aledhari, and Ayyash (2015) that provides an overview of IoT enabling
technologies, protocols, and applications where authors summarize key
elements to realize the IoT, and point out the need for new IoT plat-
forms that can offer automated management, data aggregation, and
protocol adaptation among different IoT devices. In contrast, Li, Da Xu,
and Zhao (2015) have mainly focused on examining the Service-or-
iented Architectures(SoA) in IoT, showing that the main research
challenges in designing the architecture of IoT platforms are the nature
of heterogeneous, real-time movement of the IoT devices. Several IoT
platforms have also been proposed based on Service-Based IoT Mid-
dleware, Cloud-Based IoT Middleware, and Actor-Based IoT Middle-
ware which are supporting computing services in a cloud environment
(Ngu, Gutierrez, Metsis, Nepal, & Sheng, 2017). Gazis (2017) has re-
cently pointed out the lack of standardization of IoT platforms in terms
of services, data, and communications.

Over 400 IoT platforms have already been proposed to address
sensor technologies and communication networking challenges for
supporting supply-chain, manufacturing, and smart homes applications.

H. Cao, M. Wachowicz Computers, Environment and Urban Systems 74 (2019) 23–40

24

Although these research efforts are in progress to design IoT-based
systems (Carrez et al., 2017, Datta, Bonnet, & Nikaein, 2014, Krco,
Pokric, & Carrez, 2014, Lloret, Tomas, Canovas, & Parra, 2016, Nelson,
Toth, Hoffman, Nguyen, & Rhee, 2017, Sarkar, Nambi, Prasad, &
Rahim, 2014, 2015), most of the research work has been focused on
platforms using fixed IoT devices that are tagged to a specific location,
while not many efforts have attempted to solve the problems in the
context of moving IoT devices (Chun & Park, 2015; Gerla, Lee, Pau, &
Lee, 2014; Shibata & Sato, 2017; Wu, Arkhipov, Asmare, Qin, &
McCann, 2015). Our research work envisages that a transit vehicle will
become a moving IoT device in the future, and IoT-GIS platforms will
play an important role in providing new insights in understanding
transit network performances as well as automated tasks for fostering
innovative transit applications.

One example includes the Smart Object platform that demonstrates
the feasibility of supporting real-time monitoring of commodities in a
supply chain by attaching RFID tags to objects such as consumer goods,
product parts, pallets, containers, and vehicles. The RFID readings
provide automatic object location and environmental sensors are also
used to add additional information relevant to the context of a parti-
cular monitored item (López, Ranasinghe, Harrison, & McFarlane,
2012). A similar approach was used to design the Virtual Object (VO)
platform for traffic monitoring in digital cities using inductive loop
detectors for detecting vehicle passing or arriving at a certain point
(Somov, Dupont, & Giaffreda, 2013). Both approaches provide a virtual
representation of real-world objects with a corresponding virtual object
in the platform. The concept of VO allows us to deal with the problems
of sensor heterogeneity and system scalability as well as enrich IoT data
streams with metadata (i.e. context information).

Kantarci and Mouftah (2014) presents a pioneering research work
on the conceptual design of the MATCS (Mobility-Aware Trustworthy
Crowdsourcing) platform by incorporating user auction procedures
based on current location of the users and their estimated dislocation
during the crowdsourcing process. Although this platform has not been
implemented yet, the simulated results validate the importance a mo-
bility context has in collecting and verifying IoT data streams.

In contrast, very few cloud platforms can be found in the literature
for supporting analytical tasks. Sun et al. (2016) proposes the MOMA
(Moving Object Map Analytics) platform for manually performing a list
of high performance tasks including GPS noise filtering, map matching,
geo-fencing, contextual map fusion and trajectory pattern learning.
Using a service-oriented architecture, the GPS trajectories were manu-
ally enriched by adding attributes such as weather, road type, and
traffic condition that were used to build mobility contexts such as a
single trip, personal profiling, and population profiling. Their pre-
liminary results have pointed out that performance and scalability are
the key technical challenges for improving their platform, especially for
building mobility contexts that can handle a large number of data
streams and automated tasks that can support high performance.

The UBICON platform proposed by Atzmueller, Fries, and Hayat
(2016) is the first attempt to take into account a social context within
an analytical process. Although the tasks were not automated, the
platform is developed for performing data capture, localization and
activity recognition component in which different technologies and
open-source tools are used such as the Sensor Data Collection Frame-
work (SDCF), the WEKA toolkit, the VIKAMINE platform, and the GNU
R environment for statistical computing. The social contexts were used
for illustrating the capabilities of different tasks ranging from face-to-
face social interactions to participatory open-sensing. Several applica-
tions were sketched by using this platform to perform analytical tasks.
For example, indoor localization is identified through context inference
using Bluetooth low-energy (BLE) technology or contexts are predicted
based on interpretable class association rules.

In summary, it is important to point out that the first phase in the
evolution of IoT has been focused on the proliferation of devices, pro-
tocols, and architectures where the main research challenges have been

related to connectivity, physical infrastructure, sensors, and hardware
configurations. A second phase is taking place where the core research
challenges are shifting to software design, automated analytics, and
platform configuration. Our research effort in designing an IoT-GIS
platform is somewhere between the first and second phase, and there-
fore, it might be vulnerable to major disruptions yet to come due to the
advances in networking and database technologies as has been previous
revealed by Verma, Kawamoto, Fadlullah, Nishiyama, and Kato (2017).

3. The automated analytical tasks

We propose an IoT-GIS platform focusing on using data streams
which are defined as a sequence of tuples that usually contains attri-
butes such as:

= = … =T S x y t T S x y t T S x y t{[(, , ,)], [(, , ,)], ,[(, , ,)]}n n n n n1 1 1 1 1 2 2 2 2 2

where

Sn: is a set of attributes (i.e. measurements) obtained from an IoT
device;
xn, yn, tn: is the geographical location of an IoT device at the time-
stamp t when a measurement has occurred.

The main characteristics of tuples have been previously outlined by
Gama and Rodrigues (2007). They can be described as one of the fol-
lowing:

• Each tuple in a stream arrives online. When the tuples are trans-
ported in batches, they are gathered in discrete packages at periodic
intervals of time. An effective platform begins by prioritizing
routing data packages to an automated task.

• A platform has no control over the order in which a tuple arrives
within a data package or across data packages. When a task is au-
tomated, the platform used to carry out the task requires continuous
queries. Two types of continuous queries are possible. First, pre-
defined queries can be scheduled and they are one-time queries that
can be provided by a task before any relevant tuple has arrived at
the platform. Second, ad-hoc queries can be issued online and they
are not known in advance by a task. They bring complexity to au-
tomating the tasks, and therefore, they were not used in this paper.

• Tuples are potentially unbounded in size. Ideally, an IoT-GIS plat-
form should support flexible data rates to make sure any relevant
tuple has arrived at the platform. Unfortunately, current network
technologies do not support such a capability.

Three automated tasks have been designed including (1) data in-
gestion; (2) data cleaning; and (3) data contextualization. The automation
of these tasks is of paramount importance to streamline large amount of
tuples. The data ingestion task consists of retrieving the data streams
from different IoT devices and connecting to a GIS in the cloud plat-
form. The data cleaning task involves running continuous queries to
execute common geo-processing tasks. Finally, the contextualization
task is the most complex task because it contextualizes the tuples from
the previous tasks by attaching new attributes to each original tuple
according to a specific mobility context. The a-priori knowledge about
the nature and scope of the movement of the IoT devices (i.e. the mo-
bility context) is of paramount importance to design any automated
task because it takes into account the geographical distribution of IoT
devices, their mobility, and the low latency of a communication net-
work. Fig. 1 illustrates the overview of the automated analytical tasks.

In our research work, determining a mobility context requires us to
make several assumptions which are common in the literature of mo-
bility analytics (Doulkeridis & Vlachou, 2017; Velt, Benford, & Reeves,
2017). The first assumption is that the mobility context will be devel-
oped using the concepts of a “trip” at the individual scale and a “network
of trips” at the aggregated scale. At the individual scale, a trip taken by a

H. Cao, M. Wachowicz Computers, Environment and Urban Systems 74 (2019) 23–40

25

moving IoT device will dictate how the data streams are acquired, the
sensors being used, and the mobility context of the data being har-
vested. There are many definitions of a trip, but in our mobility context
we define a trip as a sequence of tuples which represents the origin,
moves, stops, and destination of a moving IoT device. We do not claim
that this definition captures the human mobility context of any IoT
devices in the near future, but it can allow us to design the automated
tasks with some reasonable certainty with the available IoT technology
today. At the aggregated scale, a network of trips is needed to represent
any trip of a moving IoT device. When the IoT data are aggregated into
groups of trips based on a mobility context, it considerable reduces the
processing time of our automated tasks. To achieve that, our second
assumption is that a cloud computing platform is the most appropriate
for implementing our automated tasks because it provides the flexibility
of connecting it to a variety of IoT devices. Finally, the scalability
characteristic of cloud computing allows us to design our automated
tasks to be operated without processing power constraints.

3.1. Data Ingestion

The data ingestion task is known as the undertaking of pushing
tuples from different devices into our IoT-GIS platform. The ingestion
task allows an http POST, Wi-Fi and a 3G connection for rapid retrieval
of tuples from the devices themselves as well as a broadcasting service
in which a forever loop of event time windows can be applied. Selecting
the time granularity of an event time window will depend on the se-
lected mobility context. It should not be determined using the data rate
of the IoT devices, since data rates are not useful to build a mobility
context.

There are two advantages of using event time windows. First, they
separate the semantics of program from the real streaming speed of the

communication network (e.g. Wi-Fi or 3G). Hence, historical tuples can
be processed, while streaming tuples are continuously produced within
the same task. Moreover, the event time windows also restrict se-
mantically inaccurate results in the scenario of delays due to network
congestion or failure recovery. Second, they deliver more accurate
outcomes, even if the tuples arrive out of their timestamp order.

All the tuples that arrive in the IoT-GIS platform are stored in a
PostgreSQL database according to the a-priory specified event time
windows. Although NoSQL databases such as MongoDB, Cassandra, and
HBase are well suited for storing and indexing the tuples, they might
lack the functionality of storing and manipulating geographical in-
formation that is needed to build a mobility context. Moreover, the lack
of a database schema of NoSQL databases may cause a continuous
query to fail due to unpredicted application behaviour. The PostgreSQL
database provides a central database schema in our cloud platform, and
a pre-defined query to retrieve the tuples needed for the automated
tasks. Moreover, the PostgreSQL community have added many new
features and better performance for big data use cases including the
ability to store unstructured data and add a column on the fly in a
dynamic table (Chihoub & Collet, 2016).

In summary, a data package containing a set of unbounded tuples
keeps being pushed to the IoT-GIS platform and stored in a PostgreSQL
database which can be queried to retrieve the tuples using different
event time windows, ranging from hour, day, week, month, and year. In
this paper, we have executed a query to retrieve a year of tuples to
illustrate the outcomes of our proposed IoT-GIS platform.

3.2. Data cleaning

The data cleaning task is always necessary in order to eliminate
inconsistencies and errors from the stored tuples. Guaranteeing data

Fig. 1. Automated tasks our IoT-GIS platform.

H. Cao, M. Wachowicz Computers, Environment and Urban Systems 74 (2019) 23–40

26

quality for continuous and high volume of tuples is a non-trivial task,
and performing this task automatically is even more challenging be-
cause IoT devices usually produce a vast amount of noisy data. The task
is automatically initiated using a continuous query that aims to retrieve
all the raw tuples in the PostgreSQL database. Five automated data
cleaning steps are designed including (1) removing missing tuples, (2)
removing duplicated tuples, (3) handling missing attribute values, (4) re-
moving redundant attributes, and (5) removing wrong attribute values.
These steps are executed in conjunction with the pre-defined query
running in the cloud platform and they can be described as one of the
following:

• Step 1 - Removing missing tuples: Every data package is expected to
arrive accordingly to the selected event time window (e.g. every 5 s,
every hour). However, due to connectivity and/or sensor problems,
missing tuples usually occur for a trip, and they are ignored.

• Step 2 - Removing duplicated tuples: It includes the case when the
same tuple is transmitted twice. In this situation, any duplicated
tuple is identified through its timestamp trace and then removed.

• Step 3 - Handling missing attributes values: S is a set of a finite number
of attributes which is transmitted for each tuple. If the missing at-
tribute value of a tuple is not used in the further steps, the “N/A" is
assigned to this attribute. Otherwise, we delete the entire tuple.

• Step 4 - Removing redundant attributes: Although S has a fixed number
of attributes, there are cases when a new attribute is added to a tuple
during the transport to the cloud platform. For example, in the case
of having a set of 4 attributes, it might occur that 5 attributes are
retrieved instead. In this scenario, the additional attribute is auto-
matically removed.

• Step 5 - Removing wrong attribute values: A wrong value for an attri-
bute might occur due to uniqueness violation and misspelling. In
this scenario, the data cleaning task tries to standardize and nor-
malize the wrong value. But if the value cannot be standardized, the
attribute is treated as a missing attribute value case.

Once the data cleaning task is finished, a target data set is auto-
matically created. This is a cleaned data sample ready to be used by the
data contextualization task.

3.3. Data contextualization

This is the most complex task designed to be automated in our
analytical process. Contextualization enriches the tuples step by step
from the prior data cleaning task by adding new attributes to each tuple
according to a specific mobility context. But before this task even starts,
the tuples need to be sorted in the most effective manner for executing
the data contextualization steps. Towards this end, the contextualiza-
tion steps are executed using the Hadoop MapReduce framework. The
Map() phase of MapReduce framework is utilized to bundle the tuples
coming from the previous task into various groups that are later pro-
cessed in a parallel style by the Reduce() phase aiming to execute the
data contextualization steps using a Python script. The key feature of
MapReduce is its ability to perform the processing steps of a con-
textualization task across an entire cluster of nodes, with each node
processing a partition of the stream tuples.

For this paper, we selected the concept of a trip to illustrate our
mobility context. To this end, the data contextualization task consists of
seven automated steps which can be described as follows:

• Step 1 - Stop/Move Detection: The aim is to determine whether an IoT
device is moving, has stopped off, or has suspended its movement
during a trip. In this contextualization, the timestamp t and the
geographical coordinates (x, y) of each tuple are utilized. First, a
fixed mobility radius for each IoT device is determined according to
the mobility context of interest. Usually parameters used to de-
termine the threshold value are speed or a fixed time distance.

Second, the Euclidean distance of a trajectory of an IoT device is
identified based on two consecutive tuples (i.e. points). If this dis-
tance is larger than the mobility radius, a new attribute which
contains the value “move” is attached to the second tuple. In con-
trast, if this distance is less than the threshold, the “stop” attribute
value is attached to the second tuple.

• Step 2 - Stop/Move Classification: The aim is to classify the moves and
stops of each trip obtained from the previous step in order to im-
prove our understanding about their mobility context. Any stop may
occur because of an accident, traffic congestion, picking up pas-
sengers at a bus station, or a traffic light of one street intersection. A
new attribute is attached to the original tuple.

• Step 3 - Street Name Annotation: The aim is to annotate the moves
and stops according to the street nomenclature of a city network. A
new attributed is attached to the original tuple.

• Step 4 - Geographical Feature Annotation: The aim of this step is to
annotate the stops and moves according to a place of interest. Some
examples include a bus stop, a shopping mall, or a hospital. A new
attribute is attached to the original tuple.

• Step 5 - Street Intersection Annotation: The aim is to annotate the
moves and stops that occur at the intersections of a street network. A
new attribute is attached to the original tuple.

• Step 6 - Temporal Annotation: The goal of this step is to identify the
actual arrival time and departure at a specific place of interest. A
new attribute is attached to the original tuple.

• Step 7 - Trip Annotation: The aim is to tag each first tuple of a trip as
origin and each last tuple of a trip as destination. The other tuples
are then sequentially indexed.

At the end of the contextualization task, a new data set is generated
and stored in the PostgreSQL database. This data set contains seven new
attributes added to the original set of tuples obtained from the data
cleaning task. These attributes represent the mobility context that
characterises the interaction of IoT devices with their surrounding en-
vironment during their trips.

4. Cloud architecture

Our IoT-GIS platform requires stream processing for supporting the
continuous computation of data flowing through the automated tasks.
This allows any tuple that is retrieved to be processed as soon as it
arrives. The only constraint is that the output rate should be at least
similar to the data input rate, mainly to have enough memory to store
the data after each task is performed. Fig. 2 provides an overview of the
cloud architecture developed for our IoT-GIS platform. Cloud com-
puting can facilitate massive-scale and complex data processing by
taking advantage of virtualized resources, parallel processing, and data
service integration with scalable data storage that can support the IoT
data streams. Indeed, most of the analytical processes in IoT have been
deployed in the cloud due to its flexibility and efficient resource pro-
visioning (Botta, De Donato, Persico, & Pescap´ e, 2016; Cavalcante
et al., 2016; Díaz, Martín, & Rubio, 2016; Fortino, Guerrieri, Russo, &
Savaglio, 2014; Truong & Dustdar, 2015; Wang & Ranjan, 2015). Two
virtual machines (VM) are leveraged to form the cloud architecture.
The VM 1 is used to perform the data ingestion and data cleaning tasks
as well as storing the GTFS and GIS data sets which are needed for the
contextualization task. Moreover, both VM1 and VM2 are combined to
implement a high performance Hadoop cluster for executing the con-
textualization analytical task.

4.1. PostgreSQL specifications and requirements

The database in the cloud has been designed to manage and store
not only the raw tuples being generated by the IoT devices but also to
integrate geospatial data provided as input to the automated tasks. The
data sets used were the open spatial GIS transit network and the spatial

H. Cao, M. Wachowicz Computers, Environment and Urban Systems 74 (2019) 23–40

27

data from the GTFS package. Therefore, one of the main requirements
for our database is that it should be a fully ACID (Atomicity,
Consistency, Isolation, Durability) compliant database with flexibility
and high scalability in terms of geographical distribution. The
PostgreSQL 9.5.3 database was deployed on a virtual machine (CentOS
7.0× 64, Intel(R) Xeon(R) CPU E5–2650 v2 @ 2.60GHz, 8 CPU cores,
29.3 GB RAM, 859 GB Disk). PostgreSQL was selected not only because
it supports storage of binary large objects but also because it provides a
native programming interface for Python that is our language of choice
for implementing the algorithms of the automated tasks. We have also
used PostGIS which is an extension to the PostgreSQL, to support geo-
processing needed for several steps of the contextualization task.

4.2. Hadoop specifications and requirements

Hadoop was primarily used for supporting the contextualization
task. It is a Java-based open-source software framework that supports
distributed storage and processing of massive datasets across the clus-
ters of commodity servers using the MapReduce framework (Dean &
Ghemawat, 2010). Hadoop was selected because it is designed to run
applications on systems that have the scalability from a single virtual
machine to many thousands of ones, with a high level of fault tolerance.
The distributed file system (HDFS) facilitates rapid data transfer rates
among machines and allows the system to keep working uninterrupted
in case of a server failure. It divides HDFS data into large blocks that
can be handled on many servers in the cluster. To handle the data, the
Hadoop framework transfers packaged code for machines to process in
a parallel manner, based on the data blocks each machine needs to
process.

In our platform, a Hadoop cluster includes one master machine and
one slave machine that were deployed on the Compute Canada West
Cloud resource following the specifications listed in Table 1.

The main requirement for the cloud platform is to support the
MapReduce framework for the sorting of the tuples of the IoT devices as
illustrated in Fig. 3.

The MapReduce framework basically performs two functions. First,
the Map function divides the HDFS data set obtained from the cleaning
data task into key-value pairs then shuffles them into many small

subsets with the same key. The key-value pairs consist of any set of
attributes that can uniquely identify a trip of an IoT device. Second, the
map function maps this input data to a set of transitional key-value
pairs. After executing the map function, the result is key-value pairs in
which the value is the list of many sorted tuples T that have the same
key as follows:

… →Map T T K list sorted subset T(, ,) [; (_ ())]n1

The Reduce function takes these subsets and applies the con-
textualization steps in a parallel manner to produce a single result set.
The Reduce function reduces a set of intermediate values which share a
key K to a smaller set of values list(F) as follows:

→Reduce K list sorted subset T list F([; (_ ())]) ()

The input of the Reduce function is used to partition the tuples into
groups having the same key-value pairs. At the end of the Reduce
phase, all output of the Reduce function is grouped into a list of pro-
cessed tuples of the form

…

F S
F S

F S

a a a a a a a
a a a a a a a

a a a a a a a

(, , , , , , ,);
(, , , , , , ,);

(, , , , , , ,);n n

1 2 3 4 5 6 7

1 2 3 4 5 6 7

1 2 3 4 5 6 7

1 1

2 2

where a1,a2,a3,a4,a5,a6,a7 are the new attributes.

5. Experiment: smart transit for small urban areas

Small communities are usually confronted with unique challenges
when providing transit services. Transit agencies typically serve popu-
lations that live in small urban areas with no congestion and plenty of
parking facilities, and they are usually accustomed to short travel times.
For our mobility context, we have selected the Codiac Transit that
serves three communities: Moncton, Dieppe, and Riverview with a
population of 130,000. Households pay $11 per month on average to-
wards the operation of transit services. The latest available statistics
show that 2,307,725 passengers used Codiac transit services in 2016
(Codiac 2018).

Codiac Transit operates 30 bus routes from Monday to Saturday;
some of them provide evening and Sunday services. Despite the fact
that all buses of the fleet are equipped with GPS, allowing transit
managers to know the exact location of any bus every 5 s, every time
Codiac Transit considers adjusting a route or launching a new route,
they physically go out with a bus to pace. This operational undertaking
is not ideal since Codiac Transit like most small transit agencies has
limited human resources that can be devoted to perform such a task.
Therefore, this mobility context was selected to illustrate that it is
possible to accurately and automatically compute the pace of a route
using our IoT-GIS platform. Fig. 4 shows how data streams generated on
the buses can be sent to our cloud infrastructure where the automated

Fig. 2. Overview of the cloud architecture developed for our IoT-GIS platform.

Table 1
Overview of the Hadoop Specifications.

Hadoop cluster

Master Hostname: first-hung.westcloud
OS: CentOS 7.0 (x86_64)
CPU: Intel(R) Xeon(R) CPU E5–2650 v2 @ 2.60GHz
Number of CPU core: 8
RAM: 29.3 GB
Disk: 859 GB
IPv4 Address: 192.168.14.60

Slave Hostname: third-hung.westcloud
OS: CentOS 7.0 (x86_64)
CPU: Intel(R) Xeon(R) CPU E5–2650 v2 @ 2.60GHz
Number of CPU core: 8
RAM: 29.3 GB
Disk: 859 GB
IPv4 Address: 192.168.14.67

H. Cao, M. Wachowicz Computers, Environment and Urban Systems 74 (2019) 23–40

28

tasks are executed for building the mobility context. At the individual
scale, every trip is automatically created by adding information about
its actual origin, stops (e.g. stopover, and suspension of movement),
moves (e.g. passing and running), destination, bus route, street names,
and duration. At the aggregated scale, the trips are sorted out in
chronological order and real-world patterns emerge showing the com-
plex behaviour of the Codiac transit network.

Every bus in the Codiac Transit network is considered as an IoT
device for the purpose of describing our mobility context. In total, data
was collected for 800 trips containing 642 bus stations belonging to the
30 bus routes during the period of one year. The geographical dis-
tribution of the trip network is visualized in Fig. 5.

5.1. Data ingestion task

The tuples have been continuously pushed from the running buses
to our PostgreSQL database on the west cloud of Compute Canada since
01/06/2016. We retrieved a year of streaming data from 01/06/2016
to 25/05/2017 to explain the implementation of our mobility context.
Each tuple has 17 attributes described as one of the following:

1. vlr_id: The ID of the data point in the vehicle location reports table
2. route_id_vlr: The route ID in the vehicle location reports table
3. route_name: The route name
4. route_id_rta: The route ID in the route transit authority table
5. route_nickname: The abbreviation of the route

Fig. 3. Logical view of the contextualization steps using MapReduce.

Fig. 4. Overview of our IoT-GIS platform developed for Codiac Transit.

H. Cao, M. Wachowicz Computers, Environment and Urban Systems 74 (2019) 23–40

29

6. trip_id_br: The trip ID in the bid route table
7. transit_authority_service_time_id: Transit authority service time ID
8. trip_id_tta: Transit authority trip ID
9. trip_start: Start time of the trip

10. trip_finish: Finish time of the trip
11. vehicle_id_vab: Vehicle ID
12. vehicle_id_vlr: Vehicle ID in the vehicle location reports table
13. vehicle_id_vlr_ta: The descriptive name of the bus
14. bdescription: Bus description
15. lat: Latitude
16. lng: Longitude
17. timestamp: Timestamp of the data point

The data ingestion task is triggered every 5 s, and after a period of
one year, there were 65,097,658 tuples stored in the PostgreSQL da-
tabase that were used for the data cleaning task. Algorithm 1 provides
the pseudo code for the execution of the data ingestion task.

Algorithm 1. Pseudo-code developed to perform the Data Ingestion
Task.

Data: Set of G=(T1,T2,T3,…) such that Ti=(Si,xi,yi, ti) is a data
tuple streamed every 5 s.

Result: G=(T1,T2,T3,…) with Ti⊆G such that G was stored in
PostgreSQL database in the Cloud.

1 Initializing database;
2 while True do.
// run the loop forever
3 establish connection;
4 read(G);
5 forallTi⊆Gdo
6 ifTivalidthen
7 insert(Ti) to the database;
8 print “Successful”;
9 else
10 print “Failed”;

11 pass;
12 end
13 end
14 delay(5); // ingest data streams every 5 s
15 end.

5.2. Data cleaning task

The data cleaning task is triggered by a continuous query using a
time window (i.e. the query runs automatically every 5 s) as shown in
Table 2.

Errors and inconsistencies information needed to be corrected and
filtered out. In the case of missing tuples, 480,000 tuples were deleted
accounting for 0.75% of total of 65,097,658 tuples, and because 6000
bus trips had more than 100 missing tuples, they have been removed as
well. Furthermore, around 6000 tuples were standardized due to the
cases of redundant attributes, missing attribute values, and wrong at-
tribute values. Finally, 38,167,787 tuples were detected to be dupli-
cated tuples, and consequently, they have been deleted as well. At the
end, the cleaning data file consisted of 26,443,871 tuples which were
used for the data contextualization task. Algorithm 2 provides the
pseudo code developed to perform the data cleaning task.

Algorithm 2. Python pseudo-code developed to perform the data
cleaning task.

Data: Set of G=(T1,T2,T3,…) such that Ti=(Si,xi,yi, ti) is the raw

Fig. 5. The Codiac Transit Network.

Table 2
SQL Statement implemented for the cleaning task.

Description SQL Statement

Get all raw tuples given a time
period

SELECT *
FROM moncton_data
WHERE gps_timestamp BETWEEN ‘2016-06-01’
AND ‘2017-05-25’

H. Cao, M. Wachowicz Computers, Environment and Urban Systems 74 (2019) 23–40

30

tuple queried from database.
Result:U=(Ti,…) with Ti is cleaned and U⊆G is cleaned as well.
1 FunctionMain(G):
2 forallTi⊆Gdo
3 extract Trip Ki from G (Ki= Set of different Ti);
4 foreachKi⊆Gdo
5 data_1= clean_missing_tuple(Ki);
6 data_2= fix_missing_attribute(data_1);
7 data_3= fix_wrong_attribute(data_2);
8 data_4= eliminate_redundant_attribute(data_3);
9 D=eliminate_duplicated_tuple(data_4);
10 end
11 U=U.append(D);
12 end
13 returnU;

5.3. Data contextualization task

The input data for this task consist of a set of cleaned tuples
U=(T1,T2,…) for a one-year period. However these tuples require to
be ordered by trip (trip_id_br), bus route (route_id_vlr), and date (time-
stamp). This ordering is important to produce a set of contextualized
tuples Q=(Ti,…) such that each tuple in the set Q is ordered for per-
forming posteriori computations such as the Euclidean distances for
detecting stops and moves. To this end, the MapReduce framework was
used (Fig. 3). The map function was responsible for selecting and or-
dering tuples into many small subsets in a parallel manner. All tuples
with the same Route ID, same Trip ID, and same Date were grouped and
sorted in a chronological order. Once the map function finished, the
reduce function was used to implement the steps of the contextualiza-
tion task. Algorithm 3 provides the pseudo-code developed to perform
the data cleaning task.

Algorithm 3. Python code developed to perform the data
contextualization steps.

Data: Set of U=(T1,T2,T3,…) such that Ti=(Si,xi,yi, ti) is the
cleaned tuples.

Result:Q=(Ti,…) such that Ti=(Si,xi,yi, ti,context1,…contextn) is
the contextualized tuples.

1 FunctionMapper(U):
2 foreachTi⊆Udo

3 key = Ti(RouteID,TripID,Date);
4 value = Ti;
5 Zi = shuffle(key, value); /* sort all tuples with the same

Route, same Trip and same Date to many small subsetsZi*/
6 end
7 return< Ti(RouteID,TripID,Date), Zi>
8
9 Initialize Q=Empty.
10 FunctionReducer (< Ti(RouteID,TripID,Date), Zi>):
11 foreachkey Ti(RouteID,TripID,Date)do
12 Initialize R=Empty;
13 foralltuple Ti⊆ Zido
14 var1= stop_move_detection(Ti);
15 var2= classification(var1);
16 var3= street_name_annotation(var2);
17 var4= bus_stop_identification(var3);
18 var5= intersection_identification(var4);
19 var6= arrival_departure_identification(var5);
20 var7=od_identification(var6);

/*var7 = (Si,xi,yi, ti,context1,…context7) */
21 R=R.append(var7)
22 end
23 Q=Q.append(R)
24 end
25 returnQ;
Fig. 6 illustrates the contextualized steps for the bus trip 51–12 of

the route 51 on the date 15-06-2016. This particular trip was randomly
selected for explaining the outcomes of the contextualization task.

Step 1 - Stop/Move Detection: For determining whether a bus was
moving or had stopped off or had suspended its movement, an em-
pirical radius value of 15m was selected to identify moves and stops.
The Euclidean distance was also determined based on two consecutive
tuples, and if this distance was larger than 15m, a new attribute which
contains the value “move” was attached to the second tuple. In contrast,
if this distance was less than 15m, the “stop” attribute value is attached
to the second tuple. Fig. 7(a) shows the contextualized results of Step 1.

Step 2 - Stop/Move Classification: This step was carried out by adding
one new attribute which contained one of the following values:

• Running: when a bus is running on a street segment.

• Passing: when a bus passes a bus station because no passengers were

Fig. 6. Overview of the automated steps designed for the data contextualization task.

H. Cao, M. Wachowicz Computers, Environment and Urban Systems 74 (2019) 23–40

31

waiting to be dropped off or get on.

• Suspension of movement: It may occur due to an intersection, stop
sign, accident, or traffic jam.

• Stopover: when a bus stops at a bus station for dropping off or
picking up passengers.

First, a query was executed to retrieve the geographical location of
all the bus stations of a bus route from the PostgreSQL database
(Table 3). This information was available from the GTFS data pre-
viously stored in the PostgreSQL database.

Afterwards, the algorithm created a circular zone with a radius of
30 m for each bus station. The stops which are located inside the buffer
are classified as “stopovers”; otherwise, they were classified as “sus-
pension of movement”. Moreover, the moves which were located inside
the buffer were classified as “passing”; otherwise they were classified as
“running” on a street. In this step, the moves and stops belonging to this
bus trip were classified as running, passing, suspension of movement,
and stopover. The classification results of this step are illustrated in
Fig. 7(b).

Step 3 - Street Name Annotation: For this step, a query was designed
to automatically retrieve the names of the street where a move or stop
was located at (Table 4). Therefore, the GIS layer already stored in the
PostgreSQL database was used for the contextualization. This was not a
non-trivial step because the geographical coordinates of the stops and
moves were obtained from GPS signals which can range from 10m to
100m accuracy in urban areas (Salarian, Manavella, & Ansari, 2015).
Using a grid-based buffer zone in PostGIS played an important role in
indexing which street segment any cell belongs to, after localizing the
moves and stops within a cell, and consequently, identifying the street
name.

The GIS layer containing a 30m buffer zone along each bus route
line of the Codiac transit network was created. Table 5 provides query

statements to create the geographical grid cells for each bus route using
bus route 51 as an example. First, a square grid of 10m cell is created
using a geo-spatial query as reference layer and stored in the Post-
greSQL database. Second, a query is used to retrieve only the square
cells within the 30m radius from the street segments belonging to a bus
route. The results of the query are stored in a new geo-spatial table in
our database. Finally, we query the GTFS table to get the list street
names of the bus route and assign the street name for each square cell
(See Fig. 8(a)).

Fig. 8 shows an example of the grid-based buffer zone used for
tagging the street names for one trip of bus route 51. In this case, it is
possible to see that the moving bus has not followed the assigned bus
route (See yellow points on the street block on the right in Fig. 8). This
might have occurred due to an accident, road construction, or any other
event that required the driver to drive on different street segments. In

Table 3
SQL Continuous query for the Stop/Move Classification Step.

Description SQL Statement

Get a list with all bus
stations

SELECT trip_id, stop_id,
stop_sequence, depart_return, change_direction,
stop_lat, stop_lng
FROM moncton_gtfs_dim
WHERE trip_id= ‘trip’
ORDER BY stop_sequence ASC

Fig. 7. Results for one trip of the bus route 51.

Table 4
Continuous query for the Street Name Annotation Step.

Description SQL Statement

Get a list with all street
segments

SELECT nearest_street
FROM route_”+ line+”_grid AS g
WHERE
ST_SetSRID(ST_MakePoint”+str(point)+ “, 4326) &&
.geom_lat_lon

Table 5
Continuous queries used for creating the grid cells.

SQL Statement
– Create a table specifically for each route that holds the grid cells
DROP TABLE IF EXISTS route_51_grid;
– Create the table for the route from those grid cells within a 30m radius of the road
CREATE TABLE route_51_grid AS
(SELECT * From moncton_grid_10m AS m
WHERE ST_DWithin((SELECT geom_lat_lon FROM bus_routes
WHERE route_id= ‘51’), m.geom_centroid, 30, false));
CREATE INDEX geom_centroid_51_index ON route_51_grid USING GIST (geom_centroid);
CREATE INDEX geom_51_index ON route_51_grid USING GIST (geom);
CREATE INDEX geom_lat_lon_51_index ON route_51_grid USING GIST (geom_lat_lon);
– Import the annotated bus lines
ALTER TABLE route_51_grid ADD nearest_street character varying(50);
UPDATE route_51_grid SET nearest_street= (
SELECT s.stname
FROM line51_streetnames as s
ORDER BYgeom_centroid < − > ST_Transform(s.geom, 4326) LIMIT 1);

H. Cao, M. Wachowicz Computers, Environment and Urban Systems 74 (2019) 23–40

32

the case that a moving bus does not follow the designated street seg-
ment, the algorithm generates the “wrong street segment” value. Such a
problem was not foreseen by our automated task. More research work is
needed to determine how to deal with unexpected annotation errors in
an automated way.

Step 4 - Geographical Feature Annotation: The next step is to tag a bus
station id to each tuple containing the attribute values equal to stopover
and passing. This is an important step to provide a link with the bus
station id information available from the GTFS data. This was achieved
by creating a circular zone of a 30m radius around each bus station of a
transit network, and matching it with the stop (i.e. stopover and pas-
sing) location of a moving bus (Fig. 9(a)). It is important to point out
that the algorithm also needs to verify the direction of a moving bus
(e.g. eastbound and westbound) in order to identify the bus station
where a stopover/passing was actually located. We selected a tuple

located at the middle of a bus route to use it as a reference point for
identifying the direction of a moving bus. Each stop can be then an-
notated using “outbound” and “return” values (Fig. 9(b)). Using the
GTFS data stored in the PostgreSQL database, the location of a bus
station is compared with an actual stop of a moving bus (Fig. 9).

Step 5 - Street Intersection Annotation: The next step was to tag an
intersection id to each tuple. This step starts with a continuous query
used to select from the PostgreSQL database all the intersections
(Table 6).

The algorithm creates a circular zone with a radius of 30 m for each
street intersection. The tuples containing stops and moves that were
located inside the circular zone were tagged with the intersection id.
Otherwise, the NULL value is used (Fig. 10).

Step 6 - Temporal Annotation: The aim of the next step was to de-
termine the actual arrival and departure time of a moving bus for

Fig. 8. Example of the 30m buffer zone for executing the street name annotation step.

Fig. 9. Results of the bus stop identification step for one trip of bus route 51.

H. Cao, M. Wachowicz Computers, Environment and Urban Systems 74 (2019) 23–40

33

dropping off or picking up passengers. In this case, the algorithm
verifies for the timestamp of the first stopover within the circular zone
of 30m radius around each bus station, and considers it as the actual
arrival time. Similarly, the timestamp of the last stopover within the
circular zone is considered the departure time (Fig. 11(a)). This step can
be improved if automatic passenger counters (APCs) are used in a
transit network because they provide information about passenger ac-
tivity on bus trip time.

Step 7 - Trip Annotation: Finally, the last step was to tag each first

tuple of a bus trip as origin, and each last tuple of a bus trip as desti-
nation (Fig. 11(b)).

6. Discussion of the results

The subsections below analyze several aspects of the IoT-GIS plat-
form performance as well as the analysis of the mobility context to
support smart transit application in the small urban areas. The first one
evaluates computing performance of the analytical tasks run on the IoT-
GIS platform based on the processing time metric. The second set of
analyses focuses on many aspects to improve service quality of the
smart transit application, including service coverage, pace behavioural,
congestion patterns, and route connections.

6.1. Overall computing performance of the IoT-GIS platform

The section evaluates the computing performance of the IoT-GIS
platform. The data ingestion task was performed every 5 s achieving a
performance latency near to 0.0ms. Low latency processing is key when
running the data ingestion task, and this could be achieved by opti-
mizing algorithms to minimize the impact of disk I/O and the use of
faster networking. Any delay in the execution of this task will have an
impact on the execution of the other automated tasks in our IoT-GIS
platform. Fig. 12 shows the total processing time to execute the data
cleaning task using the data streams gathered for one day, one week,
two-week, and one month periods. Three bus routes having different
trip frequency scheduling, high (Bus Route 51), medium (Bus Route
61), and low (Bus Route 80), were selected for this comparison. As we
can see, the processing time varies according to the type of route and
number of data streams.

Aiming to evaluate the automatic batch processing of the data
contextualization task using MapReduce, two datasets were extracted
from the cleaned tuples to run in Hadoop. The first dataset A contains
the 12.75 million cleaned tuples from 01/06/2016 to 15/12/2016. The
second data set B contains 13.69 million cleaned tuples from 16/12/
2016 to 25/05/2017. Fig. 13 shows the processing time for all phases
including map phase, shuffle phase, and reduce phase. Notably, the
Reduce processing time is much longer than Map processing time be-
cause the Reduce phase runs all the data contextualization steps while
the Map phase mainly sorts tuples into separate cluster of the same bus
route.

Table 6
Continuous query for the Street Intersection Annotation Step.

Description SQL Statement

Get a list with all street intersections SELECT *
FROM moncton_intersection
WHERE route_id= ‘route’;

Fig. 10. Results of the intersections identification step for one trip of bus route
51.

Fig. 11. Results from steps 6 and 7 of the contextualization task.

H. Cao, M. Wachowicz Computers, Environment and Urban Systems 74 (2019) 23–40

34

6.2. Experiment evaluation

Table 7 provides an overview of the total number of tuples that have
been contextualized according to our mobility context. In total, 82,044
trips have been processed by the analytical tasks and as a result, they
have been stored in the PostgreSQL database. It is worth noticing that
the total number of trips can vary significantly according to the bus
routes, from 129 up to 10,263 trips, showing the high scalability of our
proposed approach. Moreover, the total number of tuples that have
been contextualized can also vary from, for example, 32,541 tuples
annotated as “Move” for bus route 60LT to 2,049,041 tuples annotated
as “Move” for the bus route 51.

With the statistics at hand, new insights have emerged about the

patterns of the different paces of the bus routes of the Codiac transit
network that point out a variety of transit improvements, infrastructure
enhancements, and ridership strategies. First, the highest bus stop ac-
tivity was found in the 52 bus route which is a a route with 20 bus
stations and running in approximately a circular path in downtown
Moncton. With 892,585 stopovers against to only 71,043 cases of buses
passing a bus station, it reveals a captive ridership for this bus route
(92% of usage pattern). However, the high number of cases of move-
ment suspension (1,186,840 or 61%) indicates the need for signal
synchronization and bus priority on the Main Street where this bus
route operates. In contrast, the feeder route 51 having 53 bus stations
shows a similar pace behaviour in terms of total number of stopovers
(888,435), but in this case, having a much higher number of passing

Fig. 12. The measured cleaning times of 3 sample bus routes (51, 61, 80) operating in different areas over different time windows.

Fig. 13. The measured processing times obtained from the MapReduce framework.

Table 7
Contextual statistics for the Codiac transit network.

MOBILITY CONTEXT

BUS ROUTE Moves Stops Running Passing Stopover Movement suspended Trips

50 661,373 552,356 643,592 17,781 268,294 284,062 4270
50S 45,809 35,820 44,755 1054 13,113 22,707 301
51 2,049,041 2,135,951 1,779,599 269,442 888,435 1,247,516 10,263
52 1,359,354 2,079,425 1,288,311 71,043 892,585 1,186,840 9900
60 744,855 579,926 608,990 135,865 362,600 217,326 4591
60LT 32,541 9648 27,903 4638 2345 7303 129
61 907,851 562,502 815,458 92,393 262,306 300,196 5133
61B 493,097 300,222 491,805 1292 91,043 209,179 2884
62 966,933 462,028 862,076 104,857 218,922 243,106 5039
63 1,073,340 429,122 944,673 128,667 219,738 209,384 5217
64 868,025 621,854 707,958 160,067 252,693 369,161 5246
64B 177,181 98,161 157,832 19,349 33,207 64,954 1011
65 810,943 624,252 707,095 103,848 211,322 412,930 5085
66 320,882 117,009 294,982 25,900 22,079 94,930 936
67 346,419 138,161 305,164 41,255 30,794 107,367 1774
68 359,649 151,026 306,361 53,288 36,722 114,304 1855
70 350,666 223,059 331,537 19,129 109,925 113,134 2033
71 363,895 242,956 326,833 37,062 54,591 188,365 2159
80 235,039 106,009 206,429 28,610 18,658 87,351 1174
8081c1 185,254 90,095 163,520 21,734 37,506 52,589 478
81 728,384 398,293 650,614 77,770 240,081 158,212 1966
93 616,593 295,629 566,486 50,107 91,111 204,518 3077
939,495 11,346 1804 10,552 794 344 1460 40
94 833,145 390,926 760,908 72,237 161,111 229,815 4578
95 541,689 289,693 494,189 47,500 114,486 175,207 2905

H. Cao, M. Wachowicz Computers, Environment and Urban Systems 74 (2019) 23–40

35

events (269,442 or 23%). This might be an indication of bus stations
that are not being utilized by the catchment ridership area, mainly
because this service is serving the disadvantaged and the elderly.

Second, the results also reveal the bus routes where there is a larger
number of passing events in relation to stopovers. This pace behaviour
emerges from the bus routes serving remote areas of the metropolitan
region and the Codiac agency must entice non-captive riders with im-
proved levels of service or other improvements. They are bus route 66
serving the north region of Moncton, bus route 67 serving the Industrial
Park of Moncton, bus route 68 serving the rural area of Moncton to-
wards Salisbury, and finally bus route 80 serving Riverview. Moreover,
all these routes present a moderate number of movement suspensions,
in particular bus routes 67 and 68 which have similar suspension pat-
terns of 31% and 32% respectively. In this case, both services have to
cross Highway 15, requiring an innovative strategy to optimize these
services given this network infrastructure constraint.

Third, Table 7 also shows the pace behaviour of two new bus routes
envisaged for merging routes 80 and 81, as well as merging bus routes
93, 94, and 95. Fig. 14 illustrates how the routes have been changed.
These new routes have been operated for only one trip a day for a total
of 40 days. It is interesting to point out that new route 80/81 has shown
a ridership improvement due to an increase of the number of stopovers
of old route 80. Conversely, this is not the case for new route 93–94-95,
since there has not been an increase of the number of stopover.

Finally, the Pace Behavioural Driving Index (PBDI) is computed for
each bus route as:

 ⎜ ⎟= ⎛
⎝

∑ + ∑
∑ + ∑

⎞
⎠

PBDI NORM
S D
R P

i i

i i

Fig. 14. Illustration of the old and new bus routes: (a) Bus route 80 and 81. (b) Merged bus route 8081. (c) Bus route 93,94, and 95. (d) Merged bus route 939,495.

Table 8
The overview of Pace Behavioural Driving Index of each route in the transit
network.

Bus Route Normalized Pace Behaviour Driving Index Traffic Flow

939,495 0.10394008 no traffic
60LT 0.19381871 no traffic
66 0.23837638 no traffic
67 0.26071923 no traffic
63 0.26135618 no traffic
68 0.27451253 no traffic
80 0.29484388 no traffic
94 0.30673496 unblocked flow
62 0.31236418 unblocked flow
93 0.31342797 unblocked flow
8081c1 0.31792333 unblocked flow
95 0.34960472 unblocked flow
81 0.3574634 unblocked flow
64B 0.36216888 optimal flow
61B 0.39801502 optimal flow
61 0.40504083 optimal flow
70 0.4158296 optimal flow
71 0.43645638 optimal flow
64 0.46832302 optimal flow
65 0.50322119 congested flow
60 0.50896762 congested flow
50S 0.51116849 congested flow
50 0.54596138 congested flow
51 0.68144364 congested flow
52 0.999 congested flow

H. Cao, M. Wachowicz Computers, Environment and Urban Systems 74 (2019) 23–40

36

where

∑Si: is the total number of stopovers.
∑Di: is the total number of movement suspended.
∑Ri: is the total number of running.
∑Pi: is the total number of passing.

In order to classify the traffic flow as follows:

• from 0 to<= 0.29484388: no traffic

• >0.29484388 to<= 0.3574634: unblocked flow

• >0.3574634 to<= 0.46832302: optimal flow

• >0.46832302 to 0.999: congested flow

Table 8 shows the results for each bus route. This index can be used
by transit managers to identify the bus routes that maximize the pas-
senger carrying capacity of existing corridors, streamline transit ser-
vices, and improve access to the transit system.

For the evaluation of these results, we have examined the monthly
number of total stops and moves that have been computed for bus route
51. Table 9 shows the similar patterns encountered for “stops” and
“moves”, having the highest peaks in the months of December and

March.
Moreover, congestion patterns have also been inferred by looking at

the occurrence of “stops” and “moves” at different street segments.
Fig. 15 shows that the highest number of stops of bus route 51 have
occurred at Plaza and Main Street probably due to traffic and weather
conditions, meanwhile the Weldon St. and Mountain St. have a larger
number of “moves”.

Furthermore, the most congested intersections were found by
looking at the the total number of the suspension of movement for bus
route 51. Fig. 16 shows the most congested intersections as being In-
tersection ID 778: (Birchmount & Mountain), Intersection ID 2215:
(High & Mountain), Intersection ID 1592: (Maplelon & Mountain), In-
tersection ID 2836: (Mountain & Vaughan Harvey).

Transit vehicles require the synchronization of urban traffic signals
since their suspension of movement at the intersections might cause
delays. Fig. 17 illustrates the location of the intersections that have the
most impact on time adherence for bus route 51. This information
shows a need for synchronization among these intersections.

Despite the fact that 51 is the most used bus route in the network,
Fig. 18 shows while five bus stops near downtown were very busy, over
10 bus stops were unlikely to stop to pick up passengers, and 9 bus stops
have not been used for a period of one year. According to this analytical
result, the allocated resource for the bus stops need to be optimized to
eliminate the redundant bus stops along this bus route.

7. Conclusions

Developing an IoT-GIS platform for supporting automated tasks
requires an understanding of the structure of data streams (i.e. sequence
of tuples) and communication network together with the cloud archi-
tecture needed for running the tasks. This is a challenging process,
mainly because any automated analytical task will consist of many
automated steps that rely on the selected mobility context. In this paper
we have used the Codiac transit network to describe a mobility context
that illustrates how pace driving behaviour can be computed and
routing alternatives can be evaluated to improve the average speed of
service. Our IoT-GIS platform provides operational information to small
transit agencies despite the disadvantage of not having APC and AFC
data. The platform has also the potential to be used by small agencies
that tend to have limited staff available to develop dedicated programs

Table 9
Monthly total number of stops and moves for bus route 51.

Jun-16 Jul-16 Aug-16 Oct-16 Nov-16 Dec-16 Jan-17 Feb-17 Mar-17 Apr-17 May-17

Stop 171,503 13,760 3687 48,259 166,013 378,158 225,701 180,005 349,587 303,612 280,513
Move 160,543 16,336 4697 58,568 153,390 385,446 216,495 155,427 354,073 285,827 245,907
Passing 20,433 2727 793 9012 18,990 49,826 27,785 20,748 49,129 41,756 35,282
Movement suspend 89,117 7501 1976 35,320 107,572 224,933 136,093 111,212 209,068 181,363 175,555
Running 140,110 13,609 3904 49,556 134,400 347,952 188,710 143,157 321,316 258,846 224,184
Stopover 82,386 6259 1711 12,939 58,441 168,378 89,608 77,648 157,141 137,805 120,381

Fig. 15. Overview of the total number of stops and moves of all trips of bus
route 51.

Fig. 16. Total number of stops (suspension of movement) per intersection for all trips of the bus route 51.

H. Cao, M. Wachowicz Computers, Environment and Urban Systems 74 (2019) 23–40

37

for analysing the data to conduct their strategic planning process. Other
mobility contexts where we could apply our IoT-GIS platform include
autonomous vehicles networks using V2X communication for im-
proving safety.

Our IoT-GIS platform has contextualized the raw data to show that
it is possible to explore the semantics of a mobility context as well.
However, our approach requires high performance computing power to
support all the automated tasks, especially the contextualization task.
Analytics performed over contextualized streaming data could poten-
tially revolutionize transit network services that will be able to adapt at

near real time to current or expected mobility contexts, implementing
real-time operation controls and recommender systems. The outcomes
from the data cleaning task indicate that it is not worth to send all the
data streams to the cloud since most of them will not be used in the
contextualization task. Almost half of the tuples used in our im-
plementation were deleted during the data cleaning task. This implies
that a significant number of moves and stops will not be used and could
lead to errors and bias in the further analysis. Therefore, other com-
puting architectures such as mobile fog computing might be more ap-
propriate for performing the data cleaning task at the edge of the

Fig. 17. The movement suspended pattern along the bus route 51.

Fig. 18. Total number of stopovers at each bus stop for all trips of the bus route 51.

H. Cao, M. Wachowicz Computers, Environment and Urban Systems 74 (2019) 23–40

38

network, rather than the cloud. Mobile fog computing is defined as “a
scenario where a huge number of heterogeneous (wireless and sometimes
autonomous) ubiquitous and decentralized devices communicate and po-
tentially cooperate among them and with the network to perform storage and
processing tasks without the intervention of third-parties” (Vaquero &
Rodero-Merino, 2014). Data cleaning tasks can be designed for running
in a sandboxed environment at a fog node. This will help to incorporate
a new step in the data digestion task to handle late tuple arrivals. Future
research work includes implementing the data cleaning task at a mobile
fog node which would be installed inside a vehicle of a transit network.

Finally, our IoT-GIS platform has an enormous potential to be used
to calculate transit performance indicators that have been previously
computed using expensive transit demand models. Some examples in-
clude daily trip pattern construction for service adjustment planning,
schedule coordination planning as well as in links re-routing and on-
time transit performance improvement. While researchers have re-
cognized the potential of using GPS coordinates for transit performance
monitoring, there has been limited research in dealing with the prac-
tical considerations associated with the analysis of massive amounts of
transit feeds. It is also important to point out that the 30m circular
zones might not be a universal mobility radius to be adopted by any
transit network. More research work is needed to identify the optimal
radius value for the circular zones used for bus stations and intersec-
tions. Our IoT-GIS platform provides a unique approach to enable on-
line applications for transit performance analysis in the near future.

Acknowledgement(s)

This research was supported by the NSERC/Cisco industrial
Research Chair [Grant IRCPJ 488403-14]. The authors would like to
thank the Codiac Transpo for providing the transit data. We also ap-
preciate the feedback provided by three anonymous reviewers on the
previous version of this manuscript.

References

Al-Fuqaha, A., Guizani, M., Mohammadi, M., Aledhari, M., & Ayyash, M. (2015). Internet
of things: A survey on enabling technologies, protocols, and applications. IEEE
Communications Surveys & Tutorials, 17(4), 2347–2376.

Atzmueller, M., Fries, B., & Hayat, N. (2016). Sensing, processing and analytics:
Augmenting the ubicon platform for anticipatory ubiquitous computing. Proceedings
of the 2016 ACM International Joint Conference on Pervasive and Ubiquitous Computing:
Adjunct. ACM (pp. 1239–1246). .

Banos, O., Amin, M. B., Khan, W. A., Afzal, M., Hussain, M., Kang, B. H., & Lee, S. (2016).
The mining minds digital health and wellness framework. Biomedical Engineering
Online, 15(1), 76.

Batty, M., Axhausen, K. W., Giannotti, F., Pozdnoukhov, A., Bazzani, A., Wachowicz, M.,
... Portugali, Y. (2012). Smart cities of the future. The European Physical Journal
Special Topics, 214(1), 481–518.

Bettini, C., Brdiczka, O., Henricksen, K., Indulska, J., Nicklas, D., Ranganathan, A., &
Riboni, D. (2010). A survey of context modelling and reasoning techniques. Pervasive
and Mobile Computing, 6(2), 161–180.

Botta, A., De Donato, W., Persico, V., & Pescap´ E, A. (2016). Integration of Cloud
computing and internet of things: A survey. Future Generation Computer Systems, 56,
684–700.

Carrez, F., Elsaleh, T., Gomez, D., Sanchez, L., Lanza, J., & Grace, P. (2017). A Reference
Architecture for federating IoT infrastructures supporting semantic interoperability.
2017 European Conference on Networks and Communications (EuCNC), IEEE (pp. 1–6). .

Cavalcante, E., Pereira, J., Alves, M. P., Maia, P., Moura, R., Batista, T., ... Pires, P. F.
(2016). On the interplay of internet of things and Cloud Computing: A systematic
mapping study. Computer Communications, 89-90, 17–33.

Chihoub, H., & Collet, C. (2016). A scalability comparison study of data management
approaches for smart metering systems. Parallel Processing (ICPP), 2016 45th
International Conference on. IEEE (pp. 474–483). .

Chun, S.-M., & Park, J.-T. (2015). Mobile CoAP for IoT mobility management. 2015 12th
Annual IEEE Consumer Communications and Networking Conference (CCNC), IEEE (pp.
283–289). .

Codiac (2018). Codiac transpo sevices. URL http://www.codiactranspo.ca/Information/
About_Codiac_Transpo.htm.

Datta, S. K., Bonnet, C., & Nikaein, N. (2014). An IoT gateway centric architecture to
provide novel M2M services. 2014 IEEE World Forum on internet of things (WF-IoT),
IEEE (pp. 514–519). .

Dean, J., & Ghemawat, S. (2010). Mapreduce: A flexible data processing tool.
Communications of the ACM, 53(1), 72–77.

Díaz, M., Martín, C., & Rubio, B. (2016). State-of-the-art, challenges, and open issues in the

integration of internet of things and cloud computing.
Doulkeridis, C., & Vlachou, A. (2017). The datacron ontology for semantic trajectories.

The Semantic Web: ESWC 2017 Satellite Events: ESWC 2017 Satellite Events, Portorož,
Slovenia, May 28–June 1, 2017, Revised Selected Papers 10577 (pp. 26). .

Duckham, M. (2012). Decentralized spatial computing: Foundations of geosensor networks.
Springer Science & Business Media.

Fortino, G., Guerrieri, A., Russo, W., & Savaglio, C. (2014). Integration of agent-based and
Cloud Computing for the smart objects-oriented IoT. Proceedings of the 2014 IEEE 18th
International Conference on Computer Supported Cooperative Work in Design (CSCWD).
IEEE (pp. 493–498). .

Gama, J., & Rodrigues, P. P. (2007). Data stream processing. Learning from Data Streams
(pp. 25–39). Springer.

Gazis, V. (2017). A survey of standards for machine-to-machine and the internet of things.
IEEE Communications Surveys & Tutorials, 19(1), 482–511.

Gerla, M., Lee, E.-K., Pau, G., & Lee, U. (2014). Internet of vehicles: From intelligent grid
to autonomous cars and vehicular clouds. 2014 IEEE World Forum on internet of things
(WF-IoT), IEEE (pp. 241–246). .

Giannella, C., Han, J., Pei, J., Yan, X., & Yu, P. S. (2003). Mining frequent patterns in data
streams at multiple time granularities. Next generation data mining 212. 191–212.

Gupta, A., Birkner, R., Canini, M., Feamster, N., Mac-Stoker, C., & Willinger, W. (2016).
Network monitoring as a streaming analytics problem. Proceedings of the 15th ACM
Workshop on Hot Topics in Networks (pp. 106–112). ACM.

Isukapati, I. K., Rudová, H., Barlow, G. J., & Smith, S. F. (2017). Analysis of trends in data
on transit bus dwell times. Transportation Research Record: Journal of the
Transportation Research Board, 2619, 64–74.

Kantarci, B., & Mouftah, H. T. (2014). Mobility-aware trustworthy crowdsourcing in
cloud-centric internet of things. Computers and Communication (ISCC), 2014 IEEE
Symposium on. IEEE (pp. 1–6). .

Krco, S., Pokric, B., & Carrez, F. (2014). Designing IoT architecture(s): A European per-
spective. 2014 IEEE World Forum on internet of things (WF-IoT), IEEE (pp. 79–84). .

Lee, G., Yun, U., & Ryu, K. H. (2014). Sliding window based weighted maximal frequent
pattern mining over data streams. Expert Systems with Applications, 41(2), 694–708.

Leung, C. K.-S., Cuzzocrea, A., & Jiang, F. (2013). Discovering frequent patterns from
uncertain data streams with time-fading and landmark models. Transactions on Large-
Scale Data-and Knowledge-Centered Systems VIII (pp. 174–196). Springer.

Li, S., Da Xu, L., & Zhao, S. (2015). The internet of things: A survey. Information Systems
Frontiers, 17(2), 243–259.

Lloret, J., Tomas, J., Canovas, A., & Parra, L. (2016). An Integrated IoT Architecture for
Smart Metering. IEEE Communications Magazine, 54(12), 50–57.

López, T. S., Ranasinghe, D. C., Harrison, M., & McFarlane, D. (2012). Adding sense to the
internet of things. Personal and Ubiquitous Computing, 16(3), 291–308.

Luo, D., Bonnetain, L., Cats, O., & Van Lint, H. (2018). Constructing spatiotemporal load
profiles of transit vehicles with multiple data sources. Transportation Research Record.
https://doi.org/10.1177/0361198118781166.

Lv, Z., Song, H., Basanta-Val, P., Steed, A., & Jo, M. (2017). Next-generation big data
analytics: State of the art, challenges, and future research topics. IEEE Transactions on
Industrial Informatics, 13(4), 1891–1899.

Mainetti, L., Patrono, L., Stefanizzi, M. L., & Vergallo, R. (2015). A smart parking system
based on iot protocols and emerging enabling technologies. Internet of things (WF-
IoT), 2015 IEEE 2nd World Forum on (pp. 764–769). IEEE.

Meehan, J., Aslantas, C., Zdonik, S., Tatbul, N., & Du, J. (2017). Data ingestion for the
connected world. CIDR.

Nelson, A., Toth, G., Hoffman, D., Nguyen, C., & Rhee, S. (2017). Towards a foundation
for a collaborative replicable smart cities IoT architecture. Proceedings of the 2nd
International Workshop on Science of Smart City Operations and Platforms Engineering -
SCOPE ‘17 (pp. 63–68). New York: ACM Press.

Ngu, A. H., Gutierrez, M., Metsis, V., Nepal, S., & Sheng, Q. Z. (2017). Iot middleware: A
survey on issues and enabling technologies. IEEE Internet of Things Journal, 4(1), 1–20.

Pi, X., Egge, M., Whitmore, J., Silbermann, A., & Qian, Z. S. (2018). Understanding transit
system performance using avl-apc data: An analytics platform with case studies for
the Pittsburgh region. Journal of Public Transportation, 21(2), 2.

Puthal, D., Nepal, S., Ranjan, R., & Chen, J. (2016). A secure big data stream analytics
framework for disaster management on the cloud. High Performance Computing and
Communications; IEEE 14th International Conference on Smart City; IEEE 2nd
International Conference on Data Science and Systems (HPCC/SmartCity/DSS), 2016
IEEE 18th International Conference on. IEEE (pp. 1218–1225). .

Rajeshwari, U., & Babu, B. S. (2016). Real-time credit card fraud detection using streaming
analytics. In: Applied and Theoretical Computing and Communication Technology
(iCATccT), 2016 2nd International Conference on. IEEE439–444.

Ranasinghe, Y. S., & Walpola, M. J. (2016). Integrating context-awareness with reminder
tools. Advances in ICT for Emerging Regions (ICTer), 2016 Sixteenth International
Conference on (pp. 216–221). IEEE.

Salarian, M., Manavella, A., & Ansari, R. (2015). Accurate localization in dense urban
area using google street view images. SAI Intelligent Systems Conference (IntelliSys),
2015. IEEE (pp. 485–490). .

Sarkar, C., Nambi, S. N. A. U., Prasad, R. V., & Rahim, A. (2014). A scalable distributed
architecture towards unifying IoT applications. 2014 IEEE World Forum on internet of
things (WF-IoT) (pp. 508–513). IEEE.

Sarkar, C., Nambi, S. N., Prasad, R. V., Rahim, A., Neisse, R., & Baldini, G. (2015). DIAT: A
Scalable Distributed Architecture for IoT. IEEE Internet of Things Journal, 2(3),
230–239.

Shibata, Y., & Sato, G. (2017). IoT based Mobility Information Infrastructure in
Challenged Network Environment toward Aging Society. 2017 31st International
Conference on Advanced Information Networking and applications Workshops (WAINA)
(pp. 645–648). IEEE.

Somov, A., Dupont, C., & Giaffreda, R. (2013). Supporting smart-city mobility with

H. Cao, M. Wachowicz Computers, Environment and Urban Systems 74 (2019) 23–40

39

http://refhub.elsevier.com/S0198-9715(18)30328-4/rf0005
http://refhub.elsevier.com/S0198-9715(18)30328-4/rf0005
http://refhub.elsevier.com/S0198-9715(18)30328-4/rf0005
http://refhub.elsevier.com/S0198-9715(18)30328-4/rf0010
http://refhub.elsevier.com/S0198-9715(18)30328-4/rf0010
http://refhub.elsevier.com/S0198-9715(18)30328-4/rf0010
http://refhub.elsevier.com/S0198-9715(18)30328-4/rf0010
http://refhub.elsevier.com/S0198-9715(18)30328-4/rf0015
http://refhub.elsevier.com/S0198-9715(18)30328-4/rf0015
http://refhub.elsevier.com/S0198-9715(18)30328-4/rf0015
http://refhub.elsevier.com/S0198-9715(18)30328-4/rf0020
http://refhub.elsevier.com/S0198-9715(18)30328-4/rf0020
http://refhub.elsevier.com/S0198-9715(18)30328-4/rf0020
http://refhub.elsevier.com/S0198-9715(18)30328-4/rf0025
http://refhub.elsevier.com/S0198-9715(18)30328-4/rf0025
http://refhub.elsevier.com/S0198-9715(18)30328-4/rf0025
http://refhub.elsevier.com/S0198-9715(18)30328-4/rf0030
http://refhub.elsevier.com/S0198-9715(18)30328-4/rf0030
http://refhub.elsevier.com/S0198-9715(18)30328-4/rf0030
http://refhub.elsevier.com/S0198-9715(18)30328-4/rf0035
http://refhub.elsevier.com/S0198-9715(18)30328-4/rf0035
http://refhub.elsevier.com/S0198-9715(18)30328-4/rf0035
http://refhub.elsevier.com/S0198-9715(18)30328-4/rf0040
http://refhub.elsevier.com/S0198-9715(18)30328-4/rf0040
http://refhub.elsevier.com/S0198-9715(18)30328-4/rf0040
http://refhub.elsevier.com/S0198-9715(18)30328-4/rf0045
http://refhub.elsevier.com/S0198-9715(18)30328-4/rf0045
http://refhub.elsevier.com/S0198-9715(18)30328-4/rf0045
http://refhub.elsevier.com/S0198-9715(18)30328-4/rf0050
http://refhub.elsevier.com/S0198-9715(18)30328-4/rf0050
http://refhub.elsevier.com/S0198-9715(18)30328-4/rf0050
http://www.codiactranspo.ca/Information/About_Codiac_Transpo.htm
http://www.codiactranspo.ca/Information/About_Codiac_Transpo.htm
http://refhub.elsevier.com/S0198-9715(18)30328-4/rf0060
http://refhub.elsevier.com/S0198-9715(18)30328-4/rf0060
http://refhub.elsevier.com/S0198-9715(18)30328-4/rf0060
http://refhub.elsevier.com/S0198-9715(18)30328-4/rf0065
http://refhub.elsevier.com/S0198-9715(18)30328-4/rf0065
http://refhub.elsevier.com/S0198-9715(18)30328-4/rf0070
http://refhub.elsevier.com/S0198-9715(18)30328-4/rf0070
http://refhub.elsevier.com/S0198-9715(18)30328-4/rf0075
http://refhub.elsevier.com/S0198-9715(18)30328-4/rf0075
http://refhub.elsevier.com/S0198-9715(18)30328-4/rf0075
http://refhub.elsevier.com/S0198-9715(18)30328-4/rf0080
http://refhub.elsevier.com/S0198-9715(18)30328-4/rf0080
http://refhub.elsevier.com/S0198-9715(18)30328-4/rf0085
http://refhub.elsevier.com/S0198-9715(18)30328-4/rf0085
http://refhub.elsevier.com/S0198-9715(18)30328-4/rf0085
http://refhub.elsevier.com/S0198-9715(18)30328-4/rf0085
http://refhub.elsevier.com/S0198-9715(18)30328-4/rf0090
http://refhub.elsevier.com/S0198-9715(18)30328-4/rf0090
http://refhub.elsevier.com/S0198-9715(18)30328-4/rf0095
http://refhub.elsevier.com/S0198-9715(18)30328-4/rf0095
http://refhub.elsevier.com/S0198-9715(18)30328-4/rf0100
http://refhub.elsevier.com/S0198-9715(18)30328-4/rf0100
http://refhub.elsevier.com/S0198-9715(18)30328-4/rf0100
http://refhub.elsevier.com/S0198-9715(18)30328-4/rf0105
http://refhub.elsevier.com/S0198-9715(18)30328-4/rf0105
http://refhub.elsevier.com/S0198-9715(18)30328-4/rf0110
http://refhub.elsevier.com/S0198-9715(18)30328-4/rf0110
http://refhub.elsevier.com/S0198-9715(18)30328-4/rf0110
http://refhub.elsevier.com/S0198-9715(18)30328-4/rf0115
http://refhub.elsevier.com/S0198-9715(18)30328-4/rf0115
http://refhub.elsevier.com/S0198-9715(18)30328-4/rf0115
http://refhub.elsevier.com/S0198-9715(18)30328-4/rf0120
http://refhub.elsevier.com/S0198-9715(18)30328-4/rf0120
http://refhub.elsevier.com/S0198-9715(18)30328-4/rf0120
http://refhub.elsevier.com/S0198-9715(18)30328-4/rf0125
http://refhub.elsevier.com/S0198-9715(18)30328-4/rf0125
http://refhub.elsevier.com/S0198-9715(18)30328-4/rf0130
http://refhub.elsevier.com/S0198-9715(18)30328-4/rf0130
http://refhub.elsevier.com/S0198-9715(18)30328-4/rf0135
http://refhub.elsevier.com/S0198-9715(18)30328-4/rf0135
http://refhub.elsevier.com/S0198-9715(18)30328-4/rf0135
http://refhub.elsevier.com/S0198-9715(18)30328-4/rf0140
http://refhub.elsevier.com/S0198-9715(18)30328-4/rf0140
http://refhub.elsevier.com/S0198-9715(18)30328-4/rf0145
http://refhub.elsevier.com/S0198-9715(18)30328-4/rf0145
http://refhub.elsevier.com/S0198-9715(18)30328-4/rf0150
http://refhub.elsevier.com/S0198-9715(18)30328-4/rf0150
https://doi.org/10.1177/0361198118781166
http://refhub.elsevier.com/S0198-9715(18)30328-4/rf0160
http://refhub.elsevier.com/S0198-9715(18)30328-4/rf0160
http://refhub.elsevier.com/S0198-9715(18)30328-4/rf0160
http://refhub.elsevier.com/S0198-9715(18)30328-4/rf0165
http://refhub.elsevier.com/S0198-9715(18)30328-4/rf0165
http://refhub.elsevier.com/S0198-9715(18)30328-4/rf0165
http://refhub.elsevier.com/S0198-9715(18)30328-4/rf0170
http://refhub.elsevier.com/S0198-9715(18)30328-4/rf0170
http://refhub.elsevier.com/S0198-9715(18)30328-4/rf0175
http://refhub.elsevier.com/S0198-9715(18)30328-4/rf0175
http://refhub.elsevier.com/S0198-9715(18)30328-4/rf0175
http://refhub.elsevier.com/S0198-9715(18)30328-4/rf0175
http://refhub.elsevier.com/S0198-9715(18)30328-4/rf0180
http://refhub.elsevier.com/S0198-9715(18)30328-4/rf0180
http://refhub.elsevier.com/S0198-9715(18)30328-4/rf0185
http://refhub.elsevier.com/S0198-9715(18)30328-4/rf0185
http://refhub.elsevier.com/S0198-9715(18)30328-4/rf0185
http://refhub.elsevier.com/S0198-9715(18)30328-4/rf0190
http://refhub.elsevier.com/S0198-9715(18)30328-4/rf0190
http://refhub.elsevier.com/S0198-9715(18)30328-4/rf0190
http://refhub.elsevier.com/S0198-9715(18)30328-4/rf0190
http://refhub.elsevier.com/S0198-9715(18)30328-4/rf0190
http://refhub.elsevier.com/S0198-9715(18)30328-4/rf0195
http://refhub.elsevier.com/S0198-9715(18)30328-4/rf0195
http://refhub.elsevier.com/S0198-9715(18)30328-4/rf0195
http://refhub.elsevier.com/S0198-9715(18)30328-4/rf0200
http://refhub.elsevier.com/S0198-9715(18)30328-4/rf0200
http://refhub.elsevier.com/S0198-9715(18)30328-4/rf0200
http://refhub.elsevier.com/S0198-9715(18)30328-4/rf0205
http://refhub.elsevier.com/S0198-9715(18)30328-4/rf0205
http://refhub.elsevier.com/S0198-9715(18)30328-4/rf0205
http://refhub.elsevier.com/S0198-9715(18)30328-4/rf0210
http://refhub.elsevier.com/S0198-9715(18)30328-4/rf0210
http://refhub.elsevier.com/S0198-9715(18)30328-4/rf0210
http://refhub.elsevier.com/S0198-9715(18)30328-4/rf0215
http://refhub.elsevier.com/S0198-9715(18)30328-4/rf0215
http://refhub.elsevier.com/S0198-9715(18)30328-4/rf0215
http://refhub.elsevier.com/S0198-9715(18)30328-4/rf0220
http://refhub.elsevier.com/S0198-9715(18)30328-4/rf0220
http://refhub.elsevier.com/S0198-9715(18)30328-4/rf0220
http://refhub.elsevier.com/S0198-9715(18)30328-4/rf0220
http://refhub.elsevier.com/S0198-9715(18)30328-4/rf0225

cognitive internet of things. Future Network and Mobile Summit
(FutureNetworkSummit), 2013 (pp. 1–10). IEEE.

Song, H., Srinivasan, R., Sookoor, T., & Jeschke, S. (2017). Smart cities: Foundations,
principles, and applications. John Wiley & Sons.

Sun, W., Zhu, J., Duan, N., Gao, P., Hu, G. Q., Dong, W. S., Wang, Z. H., Zhang, X., Ji, P.,
Ma, C. Y., et al. (2016). Moving object map analytics: A framework enabling con-
textual spatial-temporal analytics of internet of things applications. Service Operations
and Logistics, and Informatics (SOLI), 2016 IEEE International Conference on (pp. 101–
106). IEEE.

Truong, H.-L., & Dustdar, S. (2015). Principles for engineering iot cloud systems. IEEE
Cloud Computing, 2(2), 68–76.

Vaquero, L. M., & Rodero-Merino, L. (2014). Finding your way in the fog: Towards a
comprehensive definition of fog computing. ACM SIGCOMM Computer Communication
Review, 44(5), 27–32.

Velt, R., Benford, S., & Reeves, S. (2017). A survey of the trajectories conceptual fra-
mework: Investigating theory use in hci. Proceedings of the 2017 CHI Conference on
Human Factors in Computing Systems (pp. 2091–2105). ACM.

Verma, S., Kawamoto, Y., Fadlullah, Z. M., Nishiyama, H., & Kato, N. (2017). A Survey on
Network Methodologies for Real-Time Analytics of Massive IoT Data and Open Research
Issues.

Wang, L., & Ranjan, R. (2015). Processing distributed internet of things data in clouds.
IEEE Cloud Computing, 2(1), 76–80.

Wu, D., Arkhipov, D. I., Asmare, E., Qin, Z., & McCann, J. A. (2015). UbiFlow: Mobility
management in urban-scale software defined IoT. 2015 IEEE Conference on Computer
Communications (INFOCOM) (pp. 208–216). IEEE.

Zhong, C., Huang, X., Arisona, S. M., Schmitt, G., & Batty, M. (2014). Inferring building
functions from a probabilistic model using public transportation data. Computers,
Environment and Urban Systems, 48, 124–137.

H. Cao, M. Wachowicz Computers, Environment and Urban Systems 74 (2019) 23–40

40

http://refhub.elsevier.com/S0198-9715(18)30328-4/rf0225
http://refhub.elsevier.com/S0198-9715(18)30328-4/rf0225
http://refhub.elsevier.com/S0198-9715(18)30328-4/rf0230
http://refhub.elsevier.com/S0198-9715(18)30328-4/rf0230
http://refhub.elsevier.com/S0198-9715(18)30328-4/rf0235
http://refhub.elsevier.com/S0198-9715(18)30328-4/rf0235
http://refhub.elsevier.com/S0198-9715(18)30328-4/rf0235
http://refhub.elsevier.com/S0198-9715(18)30328-4/rf0235
http://refhub.elsevier.com/S0198-9715(18)30328-4/rf0235
http://refhub.elsevier.com/S0198-9715(18)30328-4/rf0240
http://refhub.elsevier.com/S0198-9715(18)30328-4/rf0240
http://refhub.elsevier.com/S0198-9715(18)30328-4/rf0245
http://refhub.elsevier.com/S0198-9715(18)30328-4/rf0245
http://refhub.elsevier.com/S0198-9715(18)30328-4/rf0245
http://refhub.elsevier.com/S0198-9715(18)30328-4/rf0250
http://refhub.elsevier.com/S0198-9715(18)30328-4/rf0250
http://refhub.elsevier.com/S0198-9715(18)30328-4/rf0250
http://refhub.elsevier.com/S0198-9715(18)30328-4/rf0255
http://refhub.elsevier.com/S0198-9715(18)30328-4/rf0255
http://refhub.elsevier.com/S0198-9715(18)30328-4/rf0255
http://refhub.elsevier.com/S0198-9715(18)30328-4/rf0260
http://refhub.elsevier.com/S0198-9715(18)30328-4/rf0260
http://refhub.elsevier.com/S0198-9715(18)30328-4/rf0265
http://refhub.elsevier.com/S0198-9715(18)30328-4/rf0265
http://refhub.elsevier.com/S0198-9715(18)30328-4/rf0265
http://refhub.elsevier.com/S0198-9715(18)30328-4/rf0270
http://refhub.elsevier.com/S0198-9715(18)30328-4/rf0270
http://refhub.elsevier.com/S0198-9715(18)30328-4/rf0270

	The design of an IoT-GIS platform for performing automated analytical tasks
	Introduction
	Related work
	The automated analytical tasks
	Data Ingestion
	Data cleaning
	Data contextualization

	Cloud architecture
	PostgreSQL specifications and requirements
	Hadoop specifications and requirements

	Experiment: smart transit for small urban areas
	Data ingestion task
	Data cleaning task
	Data contextualization task

	Discussion of the results
	Overall computing performance of the IoT-GIS platform
	Experiment evaluation

	Conclusions
	Acknowledgement(s)
	References

